coap协议RFC中文文档
main
main
  • Introduction
  • 1 简介
    • 1.1 特性
    • 1.2 术语解释
  • 2 受限应用协议CoAP
    • 2.1 消息模型
    • 2.2 请求响应模型
    • 2.3 中间人和缓存
    • 2.4 资源发现
  • 3 消息格式
    • 3.1 Option的格式
    • 3.2 Option Value的格式
  • 4 消息传递
    • 4.1 消息和端
    • 4.2 可靠的消息传输
    • 4.3 没有可靠性保障的消息传输
    • 4.4 消息之间的关联
    • 4.5 去除重复消息
    • 4.6 消息大小
    • 4.7 拥塞控制
    • 4.8 传输参数
      • 4.8.1 改变参数
      • 4.8.2 传输参数的衍生时间
  • 5 请求/响应的语意
    • 5.1 请求
    • 5.2 响应
      • 5.2.1 附带响应
      • 5.2.2 单独响应
      • 5.2.3 无需确认消息NON
    • 5.3 请求/响应的匹配
      • 5.3.1 令牌(token)
      • 5.3.2 请求响应的匹配规则
    • 5.4 选项(option)
      • 5.4.1 重要选项/非重要选项Critical/Elective
      • 5.4.2 代理不安全或安全转发和无缓存键
      • 5.4.3 长度
      • 5.4.4 默认值
      • 5.4.5 可重复选项
      • 5.4.6 选项编号
    • 5.5 Payload和表现
      • 5.5.1 表现
      • 5.5.2 诊断式的payload
      • 5.5.3 经由选择的表现
      • 5.5.4 内容协商
    • 5.6 缓存
      • 5.6.1 新鲜度模型
      • 5.6.2 校验模型
    • 5.7 代理
      • 5.7.1 代理操作
      • 5.7.2 正向代理
      • 5.7.3 反向代理
    • 5.8 方法定义
      • 5.8.1 GET
      • 5.8.2 POST
      • 5.8.3 PUT
      • 5.8.4 DELETE
    • 5.9 返回码定义
      • 5.9.1 成功2.xx
        • 5.9.1.1 2.01 Created
        • 5.9.1.2 2.02 Deleted
        • 5.9.1.3 2.03 Valid
        • 5.9.1.4 2.04 Changed
        • 5.9.1.5 2.05 Content
      • 5.9.2 客户端错误4.xx
        • 5.9.2.1 4.00 Bad Request
        • 5.9.2.2 4.01 Unauthorized
        • 5.9.2.3 4.02 Bad Option
        • 5.9.2.4 4.03 Forbidden
        • 5.9.2.5 4.04 Not Found
        • 5.9.2.6 4.05 Method Not Allowed
        • 5.9.2.7 4.06 Not Acceptable
        • 5.9.2.8 4.12 Precondition Failed
        • 5.9.2.9 4.13 Request Entity Too Large
        • 5.9.2.10 4.15 Unsupported Content-Format
      • 5.9.3 服务端错误5.xx
        • 5.9.3.1 5.00 Internal Server Error
        • 5.9.3.2 5.01 Not Implemented
        • 5.9.3.3 5.02 Bad Gateway
        • 5.9.3.4 5.03 Service Unavailable
        • 5.9.3.5 5.04 Gateway Timeout
        • 5.9.3.6 5.05 Proxying Not Supported
    • 5.10 Option定义
      • 5.10.1 Uri-Host,Uri-Port,Uri-Path,Uri-Query
      • 5.10.2 Proxy-Uri和Proxy-Scheme
      • 5.10.3 Content-Format
      • 5.10.4 Accept
      • 5.10.5 Max-Age
      • 5.10.6 ETag
        • 5.10.6.1 作为响应选项的ETag
        • 5.10.6.2 作为请求选项的ETag
      • 5.10.7 Location-Path和Location-Query
      • 5.10.8 条件请求选项
        • 5.10.8.1 If-Match
        • 5.10.8.2 If-None-Match
      • 5.10.9 Size1选项
  • 6 CoAP URI
    • 6.1 Coap URI scheme
    • 6.2 Coaps URI scheme
    • 6.3 标准化和比较规则
    • 6.4 将URI解码为选项
  • 7 发现
    • 7.1 服务发现
    • 7.2 资源发现
      • 7.2.1 ‘ct’特性
  • 8 多播CoAP
    • 8.1 消息层
    • 8.2 请求响应层
      • 8.2.1 Caching
      • 8.2.2 代理
  • 9 安全CoAP
    • 9.1 DTLS-Secured CoAP
      • 9.1.1 消息层
      • 9.1.2 请求响应层
      • 9.1.3 端点身份
        • 9.1.3.1 Pre-Shared Keys
        • 9.1.3.2 原始公钥证书
          • 9.1.3.2.1 配置
        • 9.1.3.3 X.509证书
  • 10 CoAP和HTTP的跨协议代理
    • 10.1 CoAP-HTTP代理
      • 10.1.1 GET
      • 10.1.2_PUT
      • 10.1.3 DELETE
      • 10.1.4 POST
    • 10.2 HTTP-CoAP代理
      • 10.2.1 OPTIONS and TRACE
      • 10.2.2 GET
      • 10.2.3 HEAD
      • 10.2.4 POST
      • 10.2.5 PUT
      • 10.2.6 DELETE
      • 10.2.7 CONNECT
  • 11 安全事项
    • 11.1 解析协议和处理URIs
    • 11.2 代理和缓存
    • 11.3 增幅的风险
    • 11.4 地址欺骗攻击
    • 11.5 跨协议攻击
    • 11.6 受限节点的注意事项
  • 12 互联网地址分配注意事项(IANA Considerations)
    • 12.1 CoAP代码注册
      • 12.1.1 方法码
      • 12.1.1 响应码
    • 12.2 CoAP选项码注册(CoAP Option Number Registry)
    • 12.3 CoAP内容格式注册(CoAP Cotent-Formats Registry)
    • 12.4 URI方案注册(URI Scheme Registration)
    • 12.5 安全URI规范注册表
    • 12.6 服务名称和端口号注册表
    • 12.7 安全服务名称和端口号注册表
    • 12.8 多播地址表
由 GitBook 提供支持
在本页

这有帮助吗?

  1. 4 消息传递

4.6 消息大小

上一页4.5 去除重复消息下一页4.7 拥塞控制

最后更新于3年前

这有帮助吗?

为了提高实现的质量,应该尽量使CoAP消息小到可以在一个链路层数据包中传输(见第1章)。CoAP文档本身只限制了消息大小的上限。大于IP数据包大小的CoAP消息会造成分片。一个CoAP消息应该尽量包含在一个IP数据包之内(即避免IP分片)并且在UDP包的payload之中。如果目的地址的MTU大小是未知的,那么应该假定IP包的MTU大小为1280字节。如果无法从头部获知消息大小,那么应该设置消息最大为1152字节,payload最大为1024字节。

实现注意:CoAP消息大小的选择适用于IPv6和目前的大部分IPv4地址。(然而,对于IPv4,很难保障绝对不发生IP分片。如果需要支持运行在受限网络上的IPv4,那么协议的实现应该使用更为保守的IPv4数据报大小,例如576字节。按照中所述,IPv4网络的MTU可以小到68字节,减去用于安全开销的字节数,可用于UDP payload的就只剩下40字节。如果要解决这个问题,也许应该设置IPv4的DF标志位,并且执行一些路径MTU探测算法。然而在使用CoAP的一般场景中,没有必要采用这些策略) 在许多受限网络中,一个重要的数据分片发生在适配层(例如6LoWPAN L2数据包最大只有127字节,还包括了各种开销在内)。这使得协议的实现应该尽可能减少数据包大小,当消息大小达到3位数的时候,应该使用块传输(block-wise transfer)。

在受限节点上,消息的大小很重要。许多实现都需要为接收消息创建缓冲区。如果一个实现由于资源过于受限而无法分配足够的缓冲区,那么对于不使用DTLS的消息,它可以使用以下策略:如果接收到一个数据报,但缓冲区太小不足以存储整个数据报,接收端通常能够判断出数据报的尾部是否被丢弃,并且能获得数据报的开头。一般来说,CoAP的头部和option部分很可能在缓冲区中。因此服务端可以正确理解这个请求,如果payload部分被截断了,可以返回一个4.13(请求数据过长,见第5.9.2.9节)的响应。当某个端发送一个幂等的请求,但接收到的响应大于它缓冲区大小,那么它可以为Block Option设置一个恰当的值,重复发送这个请求(见Bormann, C.和Z. Shelby著”Blockwise transfer in CoAP”)。

[RFC0791]
[RFC4821]